Decoding Beta-Decay Systematics: A Global Statistical Model for Beta^- Halflives
نویسندگان
چکیده
Statistical modeling of nuclear data provides a novel approach to nuclear systematics complementary to established theoretical and phenomenological approaches based on quantum theory. Continuing previous studies in which global statistical modeling is pursued within the general framework of machine learning theory, we implement advances in training algorithms designed to improved generalization, in application to the problem of reproducing and predicting the halflives of nuclear ground states that decay 100% by the β mode. More specifically, fully-connected, multilayer feedforward artificial neural network models are developed using the Levenberg-Marquardt optimization algorithm together with Bayesian regularization and cross-validation. The predictive performance of models emerging from extensive computer experiments is compared with that of traditional microscopic and phenomenological models as well as with the performance of other learning systems, including earlier neural network models as well as the support vector machines recently applied to the same problem. In discussing the results, emphasis is placed on predictions for nuclei that are far from the stability line, and especially those involved in the r-process nucleosynthesis. It is found that the new statistical models can match or even surpass the predictive performance of conventional models for beta-decay systematics and accordingly should provide a valuable additional tool for exploring the expanding nuclear landscape.
منابع مشابه
Statistical Global Modeling of β−-Decay Halflives Systematics Using Multilayer Feedforward Neural Networks and Support Vector Machines
In this work, the beta-decay halflives problem is dealt as a nonlinear optimization problem, which is resolved in the statistical framework of Machine Learning (LM). Continuing past similar approaches, we have constructed sophisticated Artificial Neural Networks (ANNs) and Support Vector Regression Machines (SVMs) for each class with even-odd character in Z and N to global model the systematics...
متن کاملA Global Model of β-Decay Half-Lives Using Neural Networks
Statistical modeling of nuclear data using artificial neural networks (ANNs) and, more recently, support vector machines (SVMs), is providing novel approaches to systematics that are complementary to phenomenological and semi-microscopic theories. We present a global model of β−-decay halflives of the class of nuclei that decay 100% by β− mode in their ground states. A fully-connected multilaye...
متن کاملStatistical Modeling of Nuclear Systematics
Statistical modeling of data sets by neural-network techniques is offered as an alternative to traditional semiempirical approaches to global modeling of nuclear properties. New results are presented to support the position that such novel techniques can rival conventional theory in predictive power, if not in economy of description. Examples include the statistical inference of atomic masses a...
متن کاملNon-Relativistic Limit of Neutron Beta-Decay Cross-Section in the Presence of Strong Magnetic Field
One of the most important reactions of the URCA that lead to the cooling of a neutron star, is neutron beta-decay ( ). In this research, the energy spectra and wave functions of massive fermions taking into account the Anomalous Magnetic Moment (AMM) in the presence of a strong changed magnetic field are calculated. For this purpose, the Dirac-Pauli equation for charged and neutral fermions is ...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0806.2850 شماره
صفحات -
تاریخ انتشار 2008